can be extended to two-dimensional initial-boundary value UGT problems on replacing the fundamental solutions.

The author is grateful to R.V. Gol'dshtein for his interest.

REFERENCES

1. NOWACKI W., Dynamic Thermoelasticity Problems, Mir, Moscow, 1970.
2. BURCHULADZE T.V. and GEGELIA T.G., Development of the Potential Method in Elasticity Theory. Metsniereba, Tbilisi, 1985.
3. KUKUDZHANOV V.N. and OSTRIK A.V., Dynamical problems of coupled thermoelasticity, Plasticity and Fracture of Solids, Nauka, Moscow, 1988.
4. IGNACZAK J., On a three-dimensional solution of dynamic thermoelasticity with two relaxation times, J. Therm. Stresses, 4, 3-4, 1981.
5. KHUTORYANSKII N.M., on potential theory for non-stationary dynamic problems of uncoupled thermoelasticity, Applied Strength and Plasticity Problems, 15, Izd. Gor'k. Univ., Gor'kii, 1980.

Translated by M.D.F.

PMM U.S.S.R., Vol.54,No. 6,pp. 820-824, 1990
0021-8928/90 $\$ 10.00+0.00$
Printed in Great Britain
(c) 1992 Pergamon Press plc

A PROBLEM IN ELASTICITY THEORY*

V.A. YURKO

The problem of determining the dimensions of the transverse cross-sections of a beam from the given frequencies of its natural vibrations is examined. Frequency spectra are indicated that determine the dimenions of the transverse cross-sections of the beam uniquely, an effective procedure is presented for solving the inverse problem, and a uniqueness theorem is proved. The method of standard models /I/ is used to solve the inverse problem.
We examine the differential equation describing beam vibrations in the form

$$
\begin{equation*}
\left(h^{\prime}(x) y^{\prime \prime}\right)^{\prime \prime}=\lambda h(x) y, \quad 0 \leqslant x \leqslant T \tag{1}
\end{equation*}
$$

here $h(x)$ is a function characterizing the beam transverse section, and $\mu=1,2,3$ is a fixed number. We will assume that the function $h(x)$ is absolutely continuous in the segment $[0, T]$ and $h(x)>0, h(0)=1$. The inverse problem for (1) in the case $\mu=2$ (similar transverse sections) was investigated /2/ in determining small changes in the beam transverse. sections for given small changes in a finite number of its natural vibration frequencies.

Let $\left\{\lambda_{k}\right\}_{k>1, j=1,2}$ be the cigenvalues of boundary-value problems $Q_{,}$for (1) with the
boundary conditions

$$
y(0)=y^{(0)}(0)=y(T)=y^{\prime}(T)=0
$$

The inverse problem is formulated as follows.
Problem 1. Find the function $h(x), x \in[0, T]$ for given frequency spectra $\left\{\lambda_{k j}\right\}_{k \geqslant 1, j=1,2}$. To solve this inverse problem we will first prove several auxiliary assertions.
We consider the function $\Phi(x, \lambda)$ the solution of (1) under the conditions $\quad \Phi(0, \lambda)=$ $\Phi(T, \lambda)=\Phi^{\prime}(T, \lambda)=0, \Phi^{\prime}(0, \lambda)=1$. We set $\alpha(\lambda)=\Phi^{\prime \prime}(0, \lambda)$. Furthermore, let the functions $C_{v}(x, \lambda)(v=0,1,2,3)$ be solutions of (1) under the initial conditions $C_{v}^{(i)}(0, \lambda)=\delta_{v \mu}$, $\nu, \mu=0,1,2,3$. We will use the notation $\quad \Delta_{j}(\lambda)=C_{3-j}(T, \lambda) C_{3}{ }^{\prime}(T, \lambda)-C_{3}(T, \lambda) C_{3-j}^{\prime}(T, \lambda), j=$ 1, 2

$$
\gamma(x)=\int_{0}^{x}(h(t))^{(1-\mu) / 4} d t, \quad \tau=\gamma(T)
$$

It is obvious that

$$
\Phi(x, \lambda)=\operatorname{det}\left[C_{v}(x, \lambda), C_{v}(T, \lambda), C_{v}^{\prime}(T, \lambda)\right]_{v=1,2,3} / \Delta_{1}(\lambda)
$$

and therefore

$$
\begin{equation*}
\alpha(\lambda)=-\Delta_{2}(\lambda) / \Delta_{1}(\lambda) \tag{2}
\end{equation*}
$$

Let $\lambda=\rho^{4}, S=\{\rho: \arg \rho \in(0, \pi / 4)\} . \quad$ It is known (see $/ 3,4 /$, say $)$ that the following asymptotic formulas hold

$$
\begin{gather*}
\lambda_{k j}=\left(k \pi \tau^{-1}\right)^{4}\left(1+A_{j 1} k^{-1}+O\left(k^{-2}\right)\right), \quad k \rightarrow \infty \tag{3}\\
\Delta_{j}(\lambda)=\rho^{j-5} A_{j 2} \exp (\rho(1-i) \tau)\left(1+O\left(\rho^{-1}\right)\right) \tag{4}\\
\Delta_{j}(\lambda)=O\left(\rho^{j-5} \exp \left(C|\lambda|^{1 / 4}\right)\right. \tag{5}\\
\Phi^{(v)}(x, \lambda)=\rho^{v-1} \sum_{\xi=1}^{2}\left(R_{\xi} \gamma^{\prime}(x)\right)^{v} g_{\xi}(x) \exp \left(\rho R_{\xi \gamma}(x)\right)\left(1+O\left(\rho^{-1}\right)\right) ; \\
R_{1}=-1, \quad R_{2}=i \tag{6}\\
\alpha(\lambda)=\rho(1-i)\left(1+O\left(\rho^{-1}\right)\right)
\end{gather*}
$$

as $|\lambda| \rightarrow \infty, \rho \in S$ where the numbers $A_{j v}$ depend on τ and the functions $g(x)$ are absolutely continuous $\quad g_{5}(x)>0, g_{1}(0)=-g_{2}(0)=(-1-i)^{-1}$.

Lemma 1. The function $\alpha(\lambda)$ is defined uniquely by giving the spectra $\left\{\lambda_{k j}\right\}_{k \geqslant 1, j=1,2}$.
Proof. The eigenvalues $\left\{\lambda_{k j}\right\}$ of the boundary-value problems Q, are identical with the zeros of the entire functions $\Delta_{j}(\lambda)$ analytic in λ. Indeed, let λ^{*} be an eigenvalue and $\Psi(x)$ an eigenfunction of the boundary-value problem Q_{1}. Then

$$
\psi(x)=\sum_{\mu=0}^{3} \beta_{\mu} C_{\mu}\left(x, \lambda^{*}\right)
$$

where

$$
\sum_{\mu=0}^{3} \beta_{\mu} C_{\mu}^{(k)}\left(0, \lambda^{*}\right)=0, \sum_{\mu=0}^{3} \beta_{\mu} C_{\mu}^{(s)}\left(T, \lambda^{*}\right)=0 ; \quad k=0, j ; \quad s=0,1
$$

Since $\psi(x) \neq 0 \quad$ this linear homogeneous algebraic system has non-zero solutions and, therefore, its determinant equals zero, i.e., $\Delta_{f}\left(\lambda^{*}\right)=0$. Repeating all the reasoning in reverse order, we obtain that if $\Delta_{j}\left(\lambda^{*}\right)=0$ then λ^{*} is an eigenvalue of the boundary-value problem Q_{J}.

It follows from (5) that the order of the functions $\Delta_{f}(\lambda)$ equals $1 / 4$ and, therefore, according to Borel's theorem /5/

$$
\begin{equation*}
\Delta_{j}(\lambda)=B_{j} \Pi\left(1-\lambda / \lambda_{k j}\right), B_{j}=\mathrm{const} \tag{7}
\end{equation*}
$$

Here and everywhere later, the product is evaluated over $k=1,2, \ldots$
Let us examine the positive function $h^{\circ}(x), h^{\circ}(0)=1$ that is absolutely continuous in the segment $[0, T]$. We will agree that if a certain symbol p denotes an object referring to (1) and constructed according to the function $h(x)$, then p° is an analogous object constructed according to the function $h^{\circ}(x)$.

Let $\tau^{\circ}=\boldsymbol{r}$. We have from (7)

$$
\frac{\Delta_{j}(\lambda)}{\Delta_{j}^{\circ}(\lambda)}=\frac{B_{j} S_{j 1}(\lambda)}{B_{j}^{\circ} S_{j}}, \quad S_{j}=\Pi \frac{\lambda_{k j}}{\lambda_{k j}^{\circ}}, \quad S_{j 1}(\lambda)=\Pi\left(1-\frac{\lambda_{k j}^{0}-\lambda_{k j}}{\lambda_{k j}^{\circ}-\lambda}\right)
$$

By virtue of Eqs. (3) and (4) $\lim \Delta_{f}(\lambda) / \Delta_{f}^{\circ}(\lambda)=1, \lim S_{j_{1}}(\lambda)=1$ as $|\lambda| \rightarrow \infty, \rho \in S$ and, therefore

$$
\begin{equation*}
B_{j}=B_{j}{ }^{\circ} S_{j} \tag{8}
\end{equation*}
$$

We obtain from (2) and (7)

$$
\alpha(\hat{\lambda})=B \Pi \frac{\lambda_{k 1}}{\lambda_{k 2}} \frac{\lambda_{k 2}-\lambda}{\lambda_{k 1}-\lambda}, \quad B=-\frac{B_{2}}{B_{1}}
$$

or, taking account of (8),

$$
\alpha(\lambda)=B^{\circ} \Pi \frac{\lambda_{k 1}^{\circ}}{\lambda_{k 2}^{0}} \frac{\lambda_{k 2}-\lambda}{\lambda_{k 1}-\lambda}
$$

Hence, the assertion of Lemma 1 follows.
Lerman 2. Let $p(x)=h^{\mu}(x)$. The following relationship holds:

$$
\begin{gather*}
\int_{0}^{T}\left(\left(h(x)-h^{\circ}(x)\right) \lambda \Phi(x, \lambda) \Phi^{\circ}(x, \lambda)-\left(p(x)-p^{\circ}(x)\right) \times\right. \tag{9}\\
\left.\Phi^{\prime \prime}(x, \lambda) \Phi^{\alpha \prime \prime}(x, \lambda)\right) d x=\alpha(\lambda)-\alpha^{\circ}(\lambda)
\end{gather*}
$$

Proof. Let

$$
\begin{gathered}
l_{\lambda} y=\left(p(x) y^{\prime \prime}\right)^{n}-\lambda k(x) y \\
r(y, z)=\left(p(x) y^{\prime \prime}\right)^{\prime} z-p(x) y^{\prime \prime} z^{\prime}+p(x) y^{\prime} z^{n}-y\left(p(x) z^{\prime \prime}\right)^{\prime}
\end{gathered}
$$

Then

$$
\begin{equation*}
\int_{0}^{T} l_{\lambda} y(x) z(x) d x=\left.L(y(x), z(x))\right|_{0} ^{T}+\int_{0}^{T} y(x) l_{\lambda^{z}}(x) d x \tag{10}
\end{equation*}
$$

Using relationships (10), the equalities $l_{\lambda} \mathrm{\Phi}(x, \lambda)=l_{\lambda}{ }^{\circ} \Phi^{\circ}(x, \lambda)=0$ and the boundary conditions on the functions $\Phi(x, \lambda), \Phi^{\circ}(x, \lambda)$, we obtain

$$
\begin{gathered}
\int_{0}^{T} \Phi^{\circ}(x, \lambda)\left(l_{\lambda}-l_{\lambda}{ }^{\circ}\right) \Phi(x, \lambda) d x=-L^{\circ}\left(\Phi(x, \lambda),\left.\left(\Phi^{\circ}(x, \lambda)\right)\right|_{0} ^{T}-\int_{0}^{T} \Phi(x, \lambda) l_{\lambda}{ }^{\circ} \Phi^{\circ}(x, \lambda) d x=\right. \\
\Phi^{\prime}(0, \lambda) \Phi^{\circ \prime \prime}(0, \lambda)-\Phi^{\prime \prime}(0, \lambda) \Phi^{\circ}(0, \lambda)=\alpha^{\circ}(\lambda)-\alpha(\lambda)
\end{gathered}
$$

On the other hand, integrating the left-hand side of the last equality by parts, we have

$$
\begin{gathered}
\int_{0}^{T} \Phi^{\circ}(x, \lambda)\left(l_{\lambda}-l_{\lambda}^{c}\right) \Phi(x, \lambda) d x=\left(\left(\left(p(x)-p^{\circ}(x)\right) \Phi^{\prime \prime}(x, \lambda)\right)^{\prime} \Phi^{\circ}(x, \lambda)-\right. \\
\left.\left(p(x)-p^{\circ}(x)\right) \Phi^{\prime \prime}(x, \lambda) \Phi^{c}(x, \dot{\lambda})\right|_{0} ^{T}+\int_{0}^{T}\left(\left(p(x)-p^{\circ}(x)\right) \Phi^{\prime \prime}(x, \lambda) \Phi^{o \prime \prime}(x, \dot{\lambda})-\right. \\
\left.\lambda \cdot\left(h(x)-h^{c}(x)\right) \Phi^{\prime}(x, \lambda) \Phi^{c}(x, \lambda)\right) d x
\end{gathered}
$$

Since the substitution vanishes, we hence obtain relationship (9).
Lemma 3. Consider the integral

$$
\begin{gather*}
J(z)=\int_{0}^{T} f(x) H(x, z) d x \tag{11}\\
\left.f(x)=\dot{U}_{n}+s(x)\right) x^{n} / n!, \quad s(x) \in C[0, T], s(0)=0, n \geqslant 0 \\
H(x, z)=-e^{-z a(x)}(1+\xi(x, z) / z) \\
a(x) \in C^{1}[0, T], 0<a\left(x_{1}\right)<a\left(x_{2}\right)\left(0<x_{1}<x_{2}\right) \\
a^{(v)}(x) \sim \beta x^{1-v} \quad(x \rightarrow+0, v=0,1), \quad a^{\prime}(x)>0
\end{gather*}
$$

where the function $\xi(x, z)$ is continuous and bounded for $x \in[0, T], z \in G \doteq\{z: \arg z \in[-\pi / 2+$ $\left.\delta_{0}, \pi / 2-\delta_{0} 1, \delta_{0}>0\right\}$. Then as $|z| \rightarrow \infty, z \in G$

$$
J(z)=(\beta z)^{-n-1}\left(f_{n}+o(1)\right)
$$

Proof. Case 1. Let $a(x) \equiv x$. Then

$$
\begin{gathered}
z^{n+1} J(z)=f_{n} z^{n+1} \int_{0}^{T} E(x, z) d x \div z^{n+1} \int_{0}^{T} s(x) E(x, z) d x+-z^{n} \int_{2}^{T} f(x) e^{-z x} \xi(x, z) d x= \\
J_{1}(z)+J_{2}(z)+J_{3}(z), E(x, z)=e^{-z x} x^{n} / n!
\end{gathered}
$$

The estimate $R z \geqslant \varepsilon_{0}|z|, \varepsilon_{0}>0$ holds in the domain G. Since

$$
\int_{0}^{\infty} E(x, z) d x=z^{-n-1}
$$

then

$$
f_{1}(z)=f_{n}-f_{n} z^{n+1} \int_{T}^{\infty} E(x, z) d x
$$

and therefore $J_{1}(z)-f_{n} \rightarrow 0$ as $|z| \rightarrow \infty, z \in G$.
Let $\varepsilon>0$. We select $\delta=\delta(\varepsilon)$ such that $|s(x)|<\varepsilon_{0}^{n+1} \varepsilon / 2$ for $x \in[0, \delta]$. Then

$$
\begin{gathered}
\left|J_{\mathbf{2}}(z)\right|<\varepsilon / 2\left(\varepsilon_{0}|z|\right)^{n+1} \int_{0}^{\delta} E\left(x,-\varepsilon_{0}|z|\right) d x+|z|^{n+1} \int_{0}^{T}|s(x)| E\left(x,-\varepsilon_{0}|z|\right) d x<\varepsilon / 2+ \\
|z|^{n+1} e^{-\varepsilon_{0}|z| 0} \int_{0}^{T-\delta}|s(x+\delta)| e^{-\varepsilon_{0}|z| x}(x+\delta)^{n} / n \mid d x
\end{gathered}
$$

As $|z| \rightarrow \infty, z \in G$ the second component can be made less than $\varepsilon / 2$. By virtue of the arbitrariness of ε we have $J_{2}(z) \rightarrow 0$ as $|z| \rightarrow \infty, z \in G$.

Since $\left|f_{n}+s(x)\right||\xi(x, z)|<C$, then for $z \in G$

$$
\left.\left|J_{3}(z)<C\right| z\right|^{n} \int_{0}^{T} E\left(x,-\varepsilon_{0}|z|\right) d x<C|z|^{-1} \varepsilon_{0}^{-n-1}
$$

i.e., $J_{3}(z) \rightarrow 0 \quad$ as $|z| \rightarrow \infty, z \in G$. Therefore the lemma is proved in Case 1.

Case 2. Now let $a(x)$ be an arbitrary function satisfying the conditions of the lemma. Then the function $t=a(x)$ has the inverse $x=b(t)$, where $b(i) \in C^{1}\left[0, T_{1}\right]$ where $T_{1}=a(T)$; $b(t)>0$ for $t>0$ and $b^{(v)}(t)=\beta^{-1} t^{1-v}\left(1+\theta_{v}(t)\right), \theta_{v}(t) \in C\left[0, T_{1}\right], \theta_{v}(0)=0, v=0$, 1. Let us make the change of variable $t=a(x)$ in the integral in (11). We obtain

$$
\begin{gathered}
J(z)=\int_{0}^{T_{1}} f^{*}(t) H^{*}(t, z) d t \\
H^{*}(t, z)=e^{-z t}(1+\xi(b(t), z) / z), f^{*}(t)=b^{\prime}(t) f(b(t))
\end{gathered}
$$

It is clear that

$$
f *(t)=\frac{t^{n}}{\beta^{n+1} n!}\left(f_{n}+s^{*}(t)\right), \quad s^{*}(t) \fallingdotseq C\left[0, T_{1}\right], \quad s^{*}(0)=0
$$

Therefore, the problem reduces to Case 1 and Lemma 3 is proved.
Let us put

$$
A_{n}=\frac{1}{\left(R_{1}-R_{2}\right)^{2}} \sum_{k, j=1}^{2} \frac{(-1)^{k+j}\left(1-\mu R_{k}^{2} R_{j}^{2}\right)}{\left(R_{k}+R_{j}\right)^{n+1}}, \quad n \geqslant 1
$$

Since $R_{1}=-1$ and $R_{2}=i, \quad$ we calculate

$$
A_{n}=\frac{a_{n}}{2 i(-2)^{n+1}}, \quad a_{n}=(\mu-1)\left(1+i^{n+1}\right)+2(\mu+1)(1+i)^{n+1}
$$

Taking account of the relationships $\left|1+i^{n+1}\right| \leqslant \sqrt{2},|1+i|^{n-1}=(\sqrt{2})^{n+1}$ we obtain that $a_{n} \neq 0, n \geqslant 1$ and, therefore, $A_{n} \neq 0$ for all $n \geqslant 1$.

Lemma 4. As $x \rightarrow+0$ let

$$
h(x)-h^{\circ}(x) \sim H_{n} x^{n} / n!
$$

Then as $|\rho| \rightarrow \infty, \rho \in S$ there exists a finite limit

$$
F_{n}=\lim \rho^{n-1}\left(\alpha(\lambda)-\alpha^{\circ}(\lambda)\right)
$$

where

$$
\begin{equation*}
A_{n} H_{n}=F_{n} \tag{12}
\end{equation*}
$$

Proof. Since $p(x)=h^{\mu}(x)$ then by virtue of the conditions of the lemma we have as $x \rightarrow+0$

$$
p(x)-p^{\circ}(x) \sim \mu / H_{n} x^{\pi / n}
$$

Using the asytmptotic formulas (6) and Lemma 3 we find as $|\rho| \rightarrow \infty, \rho \in S$

$$
\begin{aligned}
& \int_{0}^{T}\left(h(x)-h^{\circ}(x)\right) \lambda \Phi(x, \lambda) \Phi^{\circ}(x, \lambda) d x \sim \frac{H_{n}}{2 i \rho^{n-1}} \sum_{k, j=1}^{2} \frac{(-1)^{k+j}}{\left(R_{k}+R_{j}\right)^{n+1}} \\
& \int_{0}^{T}\left(p(x)-p^{0}(x)\right) \Phi^{n}(x, \lambda) \Phi^{u \prime \prime}(x, \lambda) d x \sim \frac{\mu H_{n}}{2 i \rho^{n-1}} \sum_{k, j=1}^{2} \frac{(-1)^{k+j} R_{k}^{2} R_{j}^{2}}{\left(R_{k}+R_{j}\right)^{n+1}}
\end{aligned}
$$

Substituting the expressions obtained in (9), we obtain the assertion of Lemma 4.
Let A be a set of functions analytic in the segment $10, T]$. The following results from the facts presented above

Theorem. Problem 1 has a unique solution in the class of functions $h(x) \in A$ where it can be found according to the following algorithm:

1) we construct the function $\alpha(\lambda)$ accoxding to the given spectra $\left\{\lambda_{n j}\right\}_{k=1, f=1, z}$
2) we calculate $h_{n}=h^{(n)}(0), n \geqslant 0, h_{0}=1$; for this we successively perform operations for $n=1,2, \ldots$ we construct the function $h^{\circ}(x) \in A, h^{\circ}(x)>0$ such that $h^{\circ}(v)(0)=h_{\nu}, v=0$, $1, \ldots ; n-1$ and arbitrarily in the rest, and we calculate h_{n} from relationship (12), where $H_{n}=h_{1 i}-h_{n}{ }^{0}$;
3) we determine the function $h(x)$ from the formula

$$
h(x)=\sum_{n=6}^{\infty} h_{n} \frac{x^{n}}{n!}, \quad 0<x<R, \quad R=\left[\lim _{n \rightarrow \infty}\left(\frac{\left|h_{n}\right|}{n!}\right)^{1 / n}\right]^{-1}
$$

If $R<T$, then for $R<x<T$ the function $h(x)$ is constructed by analytic continuation.

We note that the inverse problem in the class of piecewise-analytic functions can also be solved in an analogous manner.

REFERENCES

1. YURKO V.A., Restoration of nigh-order differential operators, Differents. Uravneniya, 25, 9, 1989.
2. AINOLA L.YA., On the inverse problem of natural vibrations of elastic shells, PMM, 35, 2 , 1971.
3. NAIMARK M.A., Linear Differential Operators. Nauka, Moscow, 1969.
4. RASULOV M.L., The Contour Integral Method and Its Use to Investigate Problems for Differential Equations. Nauka, Moscow, 1964.
5. LEONT'YEV A.F., Entire Functions. Exponential Series. Nauka, Moscow, 1983.
